## V&V Summary Report L2 ASCDS Version: 8.4.3

Observation 12831 - L2 Version 2 Chandra X-Ray Center

L2 Processing Date: Feb 10 2012

See axaff12831N002\_VV002\_vvref2.pdf for the full report

| V&V Scientist              | Beth Sundheim  |
|----------------------------|----------------|
| V&V Date (YYYY-MM-DD)      | 2018.03.06     |
| V&V Edition                | 2              |
| V&V Disposition and Status | OK             |
| V&V Charge Time            | 30.06279978925 |

## Comments

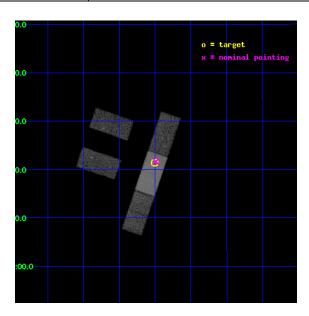
The focal plane temperature during part of this observation was warmer than the upper limit for optimum calibration of the ACIS gain and spectral resolution (i.e., -114.0 C for ACIS-I and -112.0 C for ACIS-S).

The Chandra calibration team calibrates the ACIS gain and spectral resolution using data from the external calibration source (ECS). ECS data show that the frontside-illuminated (FI) CCDs are more temperature sensitive than the backside-illuminated (BI) CCDs.

A summary of the current calibration status of the ACIS gain and spectral resolution can be found at:

http://asc.harvard.edu/cal/Acis/Cal\_prods/Gain\_and\_Spectral\_Resolution/ACIS\_response\_summary.html

## The main points are:


- 1) The gain on BI chips remains within 0.3% (i.e., the systematic uncertainty in the ACIS gain quoted on the Chandra Calibration Status Summary web page) at all measured temperatures.
- 2) The gain on FI chips remains within 0.3% below row 600 at all measured temperatures.
- 3) The gain on FI chips above row 600 can be underestimated by as much

- as 1% for focal plane temperatures exceeding -116 C.
- 4) The spectral resolution (i.e., FWHM) on BI chips is insensitive to the focal plane temperature.
- 5) Warmer focal plane temperatures increase the FWHM on FI chips by up to 30 eV near row 512 and by up to 70 eV near the top of the chips. In summary, the user should be cautious in the spectral analysis of high S/N emission lines detected on the top half of FI chips in this observation. Default processing with the current version of the CALDB will underestimate photon energies by up to 1% and broaden emission lines by up to 70 eV.

=

The data for this observation have been processed using the 'EDSER' sub-pixel event-repositioning algorithm of Li et al. (2004, ApJ, 610, 1204). Small-scale features should become sharper for sources near the aim point. The improvement will be less noticeable for off-axis sources where the size of the point-spread function is comparable to or larger than the size of an ACIS pixel. To take full advantage of the improvement, images should be binned on spatial scales smaller than the size of an ACIS pixel. Note that, at present, the point-spread function has not been calibrated for data to which the EDSER algorithm has been applied. If dither was disabled for the observation, then the algorithm can introduce artificial aliasing effects on spatial scales smaller than a pixel. If you would prefer to use no sub-pixel adjustment or to apply a coordinate randomization, then use acis\_process\_events to reprocess the data with the parameter pix\_adj=NONE or RANDOMIZE, respectively.

| seq_num  | 702464                                 | Sequence number                          |
|----------|----------------------------------------|------------------------------------------|
| obs_id   | 12831                                  | Observation id                           |
| title    | Energy Dependent X-ray<br>Microlensing | Proposal title                           |
| observer | Dr. Christopher Kochanek               | Principal investigator                   |
| object   | Q2237+0305                             | Source name                              |
| dtycycle | 0                                      | <b>&amp;</b> #160                        |
| cycle    | P                                      | events from which exps? Prim/Second/Both |
| ra_targ  | 340.12625                              | Observer's specified target RA [deg]     |
| dec_targ | 3.358                                  | Observer's specified target Dec [deg]    |
| ra_nom   | 340.12250524035                        | Nominal RA [deg]                         |
| dec_nom  | 3.3611083224491                        | Nominal Dec [deg]                        |
| roll_nom | 108.73211038322                        | Nominal Roll [deg]                       |
| revision | 2                                      | Processing version of data               |
| ontime   | 30062.79978925                         | Sum of GTIs [s]                          |
| livetime | 29354.15593078                         | Livetime [s]                             |
| ontime2  | 30059.317749023                        | Sum of GTIs [s]                          |
| ontime3  | 30061.058749199                        | Sum of GTIs [s]                          |
| ontime6  | 30062.79978925                         | Sum of GTIs [s]                          |
| ontime7  | 30062.79978925                         | Sum of GTIs [s]                          |
| ontime8  | 30062.79978925                         | Sum of GTIs [s]                          |
| 12events | 104760                                 | Number of level 2 events                 |

