
Comparison of Gregory-Loredo to Bayesian Blocks
Michael Nowak, July 8, 2005

Abstract

The Bayesian Blocks algorithm, applied to the ASCII lightcurve files generated by Arnold Rots for
ObsId 635, is compared to the variability results found from Arnold’s application of the Gregory-Loredo
algorithm to the same lightcurves. The Bayesian Blocks algorithm seems to be slightly more sensitive,
and has the advantage of being able to optimally divide the lightcurve into segments of varying length
(i.e., find a mixture of very long and very short data segments). However, it is not recommended as a
good ‘Level 3’ substitute for the Gregory-Loredo algorithm since it is only marginally more sensitive,
but requires nearly 100 times the run time. (The latter figure is dominated by the run on a single source,
0003, which has � 24,000 counts.) It does, however, serve as a good validation of the sensitivity of
the Gregory-Loredo algorithm, and can be very useful for users to ‘post-process’ Level 3 lightcurves in
search of finer features.

Introduction

The Bayesian Blocks algorithm of Scargle (unpublished - it’s been in the works for a while now) is in a
number of ways related and similar to the Gregory-Loredo algorithm (1992, ApJ 398, 146). The primary
difference is that, as opposed to the GL algorithm where the lightcurve is parsed into a successive number of
histograms with evenly divided time bins, BB can divide the lightcurve into any number of bins of arbitrary
length. GL will find the ‘optimal’ uniform partitioning of the lightcurve, whereas BB will find the ‘optimal’
partitioning overall.

The drawback is that BB is an ��� scheme (which, to be fair, is not unreasonable given that it is finding
the optimal solution among ��� possibilities). The other important caveat about the BB routine is that there
are issues with what is the best ‘prior’ to use in its implementation, and it has a ‘penalty factor’ for deciding
whether to accept a partitioning. This latter factor is something akin to a significance level, but ‘significance
level’ is anathema to Bayesians, and this is not an exact interpretation, as I explain further below. But given
proper choices for both, BB can be a fairly robust routine.

Implementation

There’s a lot of debate for various Bayesian schemes that deal with Poisson statistics as to what the best prior
to use is. Some marginalize over count rate, taken as uniform from 0 to infinity (or instead, an arbitrarily
chosen upper bound). Scargle suggested marginalizing over Poisson probability, � , for finding one or more
events in an interval as being superior, since � only varies between 0 and 1. (Scargle chooses it to be
uniform between 0 and 1.) I think both of these latter priors unfairly penalize large, positive fluctuations as
not being ‘special’ enough. Nor do they incorporate any information from the lightcurve itself. In the tt
s-lang code that I have written, I allow for a variety of choices. For my implementation of BB presented
here, I marginalize with a prior that is �
	���
�������������� , where � is the (presumed constant) rate for the
lightcurve, and ��� is the actual mean rate calculated for the lightcurve.

Aside from not unfairly penalizing large fluctuations and taking into account the mean rate, I like this
prior in part because in the tests that I have run it seems to produce results for a given ‘penalty factor’ that
are in good accord with its naive, frequentist interpretation as a ‘significance level’. (Jeff Scargle doesn’t
find this a sufficient aesthetic justification for a prior, whereas not being a pure Bayesian, I rather like this
justification.)

The ‘penalty factor’ is basically a prior on the probability for the number of blocks, taken as �����! "$#&%(' .
In practice, it is put in as a parameter, ncp prior, such that ncp prior)*�,+.-0/1�2�3� . In a frequentist
interpretation, this parameter yields the significance level as 45�6	��7
8����9;:�< <�=1>@?@=A� (or the � value as
	���
8���B9C:D< <A=E>@?F=7� . This is another difference between the BB and GL algorithms. In the latter, an odds
ratio (as well as an optimal decomposition) are automatically output. In BB, a ‘significance level’ must
be chosen ahead of time, and the optimal decomposition for that significance level is output. (Thus, the

1

Figure 1: Source 0003, at ‘p values’ of GIHKJML�N�O , JPL0N�Q , and JPL0N�R . The peak levels are at 1 count/frame, and probably
are piled up. In this particular case, Bayesian Blocks seems to be detecting more variability than Gregory-Loredo.

algorithm must be run multiple times if one wishes to explore different ‘significance levels’.) Here I have
run tests with ncp prior SUT and VAWYX (roughly 95% and 99% significance levels).

The implementation of the algorithm comes from my s-lang scripts, found at:
http://space.mit.edu/CXC/analysis/SITAR

Running it on the ASCII files is pretty straightforward. The s-lang script I used is as follows:

variable nfile = 118;
variable file,fp,t_event,cell,results;
fp = fopen("bb_results_4.6","w");
() = fclose(fp);
variable ctype=2;
variable clump=0.5;
variable frame=3.24104;
variable ncp_prior=4.6;
variable tmin = 7.2039524e7, tmax = 7.2141507e7;
variable i=1;
loop(nfile)
{

file = sprintf("%04d",i);
t_event = readcol("./635/"+file+"_src_time.lis");
cell = sitar_make_data_cells(t_event,ctype,clump,frame,tmin,tmax);
results = sitar_global_optimum(cell,ncp_prior,ctype,,0,1);
fp = fopen("bb_results_4.6","a");
() = fprintf(fp,file+" %7i %5i \n",length(t_event),length(results.cpt));
() = fclose(fp);
i++;

}

Results

Running at 95% significance level, the BB algorithm detects all of the sources that Arnold listed as ‘signifi-
cantly variable’ in his memo, with the exception of Source 0084. Additionally, one that was listed as a ‘high
background’ source (0024), as well as eight other sources, are detected. None of the sources that Arnold
listed as ‘false detections’ are found to be variable. Increasing the threshold significance level to 99%,
source 0116 is no longer detected as variable, and the additional detected sources (beyond 0024) decreases
from eight to three. Each run takes about 1550 seconds.

A few other interesting results pop out. Observation 003, which takes up more than half the run time
in applying the BB algorithm, has excellent statistics. Arnold showed this in his report on GL, and the GL

2

Figure 2: Sources 0018, 0024, and 0051, at ‘p values’ of ZF[ZF\ . Error bars are]�^`_ (assuming Gherels statistics -
sorry). At this significance level, these are the only three sources detected by Bayesian Blocks, and not by the K-S or
G-L tests run by Arnold Rots. I would argue that these lightcurves are consistent with real variability (at least within
the chosen significance level).

Figure 3: Source 0084 at 78% significance level, and source 0116 at 95% significance level. (Both of these sources
were detected by G-L.) The former only pops up at fairly low significance levels, whereas the latter disappears some-
where between 95% and 99% significance. (Again, I apologize for the Gherels statistics.) I’m not sure if either of
those results is unrealistic.

decomposition had relatively low temporal resolution. Bayesian blocks finds lots of very significant short
time scale variability. (For instance, there is one 114 sec interval with a single photon, when the mean rate
would have predicted 23!). GL, misses, or in this case averages over, such behavior. As shown in Fig. 1,
this behavior persists to very high significance level. I suspect what is going on in this source is some very
serious flaring. The clearly seen plateaus are at a level of one count/frame - the maximum expected for a
piled source. The deep dips near these plateaus are probably even stronger flares where pileup is wiping out
detected counts (either through grade migration and/or exceeding the on-board spacecraft energy threshold)
and leaving a hole. At any rate, I believe that this short term variability is probably real. This observation
also shows some of the nastiness that can occur if pileup is an issue.

As for the sources that Bayesian Blocks finds as variable, which Arnold’s runs of the GL and KS tests
miss, I think these are also truly variable sources. Running BB at the 99% significance level, the three extra
detected variable sources are shown in Fig. 2. I think that they get missed by GL since they are decidely
asymmetric. The initial, even breaks into two or three pieces that the GL algorithm performs is likely
missing the variability, while a larger number of breaks isn’t statistically warranted. I don’t believe that
any of these lightcurves are wildly significant, but I think that a detection algorithm run at a nominal 99%
significance level could call these ‘variable’.

In contrast, I see why the BB algorithm misses Source 0084 altogether, and then loses Source 0116
somewhere between the 95% and 99% significance levels. As shown in Fig. 3, these sources are on the

3

hairy edge of what I’d consider variable. They are reasonably consistent with random fluctuations, so again,
I can’t quibble with the results of BB.

Recommendations

Despite the fact that I believe BB is doing a better job of both detecting and characterizing the variability, I
don’t think I would recommend it over the GL algorithm. There are two primary reasons for this. First, it
is definitely slower. I’m running on a 1.2 GHz AMD processor, and a full run at a single confidence level
takes 1550 seconds of CPU time (running consecutively two confidence levels takes 2960 seconds of CPU
- there is some overhead in setting up the lightcurve that is saved on the second confidence level run). GL is
on the order of 100 times faster. Second, BB is less flexible in that a value of ncp prior must be chosen
and then the algorithm run. GL can just be run, the odds ratio printed out, and the most optimal lightcurve
decomposition can be stored, regardless of the odds ratio. We can set a flag based on an agreed upon odds
ratio, but a user could potentially filter on whatever value they like. With BB, they are stuck with what we
give them.

The BB algorithm run at a 99% significance threshold (ncp prior=4.6); however, I think serves as a
good validation of the GL results at an odds ratio of 2. The two alogorithms agree on 43 sources. BB finds
4 that GL does not, while GL finds one that BB does not. Essentially, they are in 90% agreement.

My one concern is learning how to identify situations like shown in Fig. 1, where the source is likely
piling up. (Although, in general, dealing with pileup in the L3 pipeline is not a fully resolved issue.) But
at some level I think the L3 pipeline is to point out behavior for further study, not necessarily provide its
definitive description. GL certainly flags Source 0003 as interesting, and a user could use BB to study it
further.

Table

Here I provide a list of the variable sources for ObsId 635, as detected by BB run at a threshold of 95%
(ncp prior=3.0) and 99% (ncp prior=4.6) significance levels. N event is the number of photon events
in the ASCII file. N cpt is the number of ‘change points’ (= the number of blocks the lightcurve has been
decomposed into). I’m only printing those results where one of the runs produced more than one block. You
can see in general that increasing the value of ncp prior smooths out the lightcurve decomposition.

Source N_event N_cpt 0.95 N_cpt 0.99

0001 8674 20 8
0002 17450 16 8
0003 24093 443 288
0004 6775 29 8
0005 2992 14 11
0006 2831 10 6
0007 1115 4 4
0008 4445 110 35
0009 1106 13 8
0010 1102 50 31
0011 8697 16 9
0012 1156 3 1
0013 1401 13 11
0014 1323 5 5
0015 4847 15 2
0016 484 3 3

4

0017 785 7 6
0018 377 2 2
0019 3247 8 6
0020 1025 13 8
0021 659 3 3
0022 651 8 5
0023 220 2 2
0024 542 3 3
0025 170 2 1
0026 199 4 4
0027 2710 6 4
0028 336 2 2
0031 287 2 1
0032 291 3 3
0033 171 3 3
0034 104 3 1
0035 129 3 2
0037 100 2 2
0039 76 2 1
0041 2040 2 2
0043 149 3 3
0044 162 3 1
0049 67 3 2
0051 167 2 2
0052 98 2 2
0053 57 4 3
0054 138 3 3
0055 69 3 3
0056 68 3 3
0058 530 2 2
0060 58 2 2
0062 38 3 2
0074 47 2 2
0078 328 6 5
0080 135 2 2
0095 25 2 1
0096 93 4 3
0116 14 3 1

5

