
by the NOAO IRAF Team:
Mike Fitzpatrick

Rob Seaman
Frank Valdes

Nelson Zárate

IRAF SPP Programming

R. Seaman – 22 July 2003

“An Introductory User’s Guide to IRAF
SPP Programming” by Rob Seaman
IRAF package of examples from the text
Quick Reference Card
Document refers to v2.10, but still valid
http://iraf.noao.edu/docs/prog.html
Further references within User’s Guide

References

Extreme portability
Language interface (SPP)
Powerful procedural interfaces (VOS)
Host dependent kernel (OS interface)
Bootstrap utilities (xc and mkpkg)
CL context and resources
Standards

IRAF Design Philosophy

Tasks live in packages (see p. 55)
Compiled programs (SPP)
Interpreted scripts (CL)
Foreign tasks (Unix and IMFORT)
I/O redirection
Background execution
Host execution
Parameters

IRAF Tasks

Name abbreviation (dictionary, not path)
Graphics
Image display
Cursors
IRAF networking
IRAF environment
Virtual pathnames
External packages

IRAF Tasks (continued)

Hello, world!

HELLO -- Sample program introducing SPP.

task hello = t_hello_world

procedure t_hello_world ()

begin
 call printf (”Hello, world!\n”)
end

Compiling an IRAF Task

cl> xc hello.x
hello.x:
 sys_runtask:
 t_hello_world:
hello.f:
 sysruk:
 thelld:
link:

Declaring an IRAF Task

cl> task $hello = hello.e

or
cl> task $hello = home$hello.e

or
cl> task fibonnaci = home$fibonnaci.e

Running an IRAF Task

cl> hello
Hello, world!

cl> hello > foo
cl> type foo
Hello, world!

cl> hell &
[1]
cl> Hello, world!
[1] done 0.0 0:00 0%

cl> $hel
Hello, world!
Time (hello) 0.00 0:00 99%

IRAF file names (.x, .h, .e, .o, .a, ...)
No semicolons (except for null statements)
Continue with comma, operator or backslash
Free form indentation and blank lines
Comment lines begin with #
define constants with macros
Declare all variables and external functions
Don’t declare intrinsic functions (overloading)

SPP Basics

Start all subroutines and typed functions
with procedure statement
Use begin and end within procedures
Reference untyped procedures with call
Braces ({}) surround execution blocks
Arrays are specified with brackets ([])

SPP Basics (continued)

SPP Conditional Statements
 if (expression) {
 statements
 } else if (another expression) {
 other statements
 } else {

 more statements
 }

 switch (integer expression) {
 case integer :
 statements (does not fall through)
 case another integer :
 other statements
 break
 default:

 yet more statements
 }

SPP Looping and Iteration

 do i = 0, 10, 2 {

 statements
 }

 for (i=1; i <= 10; i=i+1) { # no ++ or += constructs

 statements
 }

 while (boolean expression) {
 statements
 next # not “continue”
 }

 repeat {

 statements
 } until (boolean expression)

SPP Branching

 break # terminates conditional or loop
 next # skips to top of loop

 return # exits procedure

 return (typed value) # exits function, returns value

 define done_ 99 # maximum label for goto is 99
 goto done_

 statements
done_

 more statements

SPP Declarations

Arrays are 1 indexed
Scalar types similar to C (real, not float)
 pointer is an explicit type
Fortran style common
Fortran style data statements

Various interfaces require an include file
System include files are kept in iraf$lib
Key constants preloaded from hlib$iraf.h
Machine constants are in hlib$mach.h

Include Files

Query (prompt the user)
Hidden (provide a default)
Menu mode
Attributes (type, range/enum, prompt, ...)
Parameter editor (eparam)
Private uparm directory (learn/unlearn)
Parameter sets (and package parameters)
Parameter caching

CL Parameters

Tasks with Parameters

fibonnaci.x (see page 7 of User’s Guide):
 nterms = min (clgeti (”nterms”), MAX_TERMS)

examples$src/fibonnaci.par:
 nterms,i,a,,1,50,Number of terms in the...

usage:
 cl> fibonnaci.nterms = 7
 cl> lpar fibonnaci
 nterms = 7 Number of terms...

 cl> = fib.nterms.p_max
 50

Tasks with Parameters (cont.)

cl> fib
Number of terms in the Fibonnaci sequence (1:50) (7): <cr>
 N Algebraic Sequence
 1 1 1
 2 1 1
 3 2 2
 4 3 3
 5 5 5
 6 8 8
 7 13 13

cl> fib 3
 N Algebraic Sequence
 1 1 1
 2 1 1
 3 2 2

Implemented as a preprocessor
Usage similar to Unix/C (e.g., STDIO)
Call by reference, not value
Executables may contain multiple tasks
Subprocesses are cached by the CL
Identifiers mapped to six characters (5+1)

Advanced SPP Concepts

 define data structures with macros
 define inline functions with macros
save these in include files
Pointers are based on Mem_[] common
Stack memory allocation (smark/salloc/sfree)
Heap memory allocation (malloc/mfree)
Catch errors with errchk and iferr blocks
Generate errors with error and erract

Advanced SPP Concepts (cont.)

See the Quick Reference Card
See the source code and system help docs
Rich scientific and system APIs, see p. 41
fmtio is similar to C stdio
 printf format specifications, see p. 51
Intrinsic math functions, see p. 52
Vector operators (VOPS), see p. 48
VOPS also callable from IMFORT

VOS Libraries

What’s Next?
Visit http://iraf.noao.edu

Send email to iraf@noao.edu

